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ABSTRACT 

This study focussed on the extraction and characterisation of carotenoid pigments and 

genes from the carotenoid biosynthetic pathway in I. batatas leaves. Six different local 

I. batatas varieties were studied namely, I. batatas var. Batu Kelantan (BK), I. batatas 

var. Batu Biasa (BB), I. batatas var. Oren (Oren), I. batatas var. Indon (Indon), I. 

batatas var. Vitato (Vitato) and I. batatas var. Biru Putih (BP).  

The different I. batatas varieties were distinguished based on the morphological 

variations in their leaves and storage roots. General screening of the β-carotene and 

lutein levels conducted across the different developmental stages among the different 

varieties showed that 9 to 12 days old Oren variety leaves exhibited the highest levels of 

β-carotene and lutein pigments and thus was chosen as the suitable sample for 

subsequent experiments. Storage at 15°C was found to prolong storage of the leaf 

samples and the leaves showed a maximum storage of approximately 4 days before the 

pigments level deteriorated to below 80% of their total amount.  

Acetone was found to be the suitable extraction solvent due to the higher intensity of 

yellow colour observed and the presence of higher levels of β-carotene and lutein 

pigments in the extract. Furthermore, 40% KOH and 2 hours of saponification time 

were selected as the optimum parameters for extraction. Stability experiments 

conducted on the yellow pigments extract kept in different storage conditions 

(temperature, illumination and matrix) for short term and long term durations showed 

that lutein and β-carotene exhibited lower stability in acetone and upon exposure to high 

temperature and light. Illumination was found to have had the greater effect on pigment 

stability compared to temperature.  
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LCMS/MS analysis showed that the yellow extract contained organic acids, lipids and 

traces of carotenoid, namely β- cryptoxanthin and 4-ketozeaxanthin, besides the two 

main pigments, β-carotene and lutein. Pesticide analysis conducted via GCMS showed 

no traces of herbicides, organochlorine insecticide and organophosphorus insecticide in 

the extract. Antioxidant assays performed on the extract showed that it contained 2.994 

± 0.078 g/ 100g gallic acid equivalents and 114.86 ± 4.35 µg/g catechin equivalents 

respectively using the Folin-Ciocaltaeu and Vanillin HCl assays. The radical scavenging 

activity of the extract recorded an IC50 value of 491.86 µg/ml, which was only slightly 

lower compared to vitamin C (IC50= 471.6 µg/ml).  

Lycopene epsilon-cyclase (LcyE), lycopene beta-cyclase (LcyB) and phytoene synthase 

(Psy) genes were successfully isolated from the I. batatas leaves via RT-PCR. Pfam 

analysis showed that the LcyB and LcyE genes belong to the lycopene cyclase protein 

family while the Psy gene belongs to the squalene/phytoene synthase domain. BLASTp 

results on these genes further confirmed their identity and phylogenetic tree revealed 

their relationship with similar sequences from other plants. This study has shown that I. 

batatas leaves are suitable source for the extraction of carotenoids with high antioxidant 

properties.  
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ABSTRAK 

Kajian ini memfokus kepada pengekstrakan dan karekterasi ekstrak pigmen karotenoid 

dan gen terlibat dalam sintesis karotenoid daripada daun I. batatas. Enam varieti ubi 

keledek tempatan dikaji termasuk varieti Batu Kelantan (BK), Batu Biasa (BB), Oren 

(Oren), Indon (Indon), Vitato (Vitato) dan Biru Putih (BP).  

Ubi keledek dari varieti yang berlainan dikenalpasti melalui variasi morfologi pada 

daun dan ubi tumbuhan. Tahap beta karotin dan lutin dalam daun dari varieti dan tahap 

perkembangan yang berlainan dikenalpasti dan daun ubi keledek varieti Oren (9 hingga 

12 hari) dipilih sebagai sampel mulaan kerana mempunyai tahap pigmen tertinggi jika 

dibandingkan dengan varieti-varieti lain. Suhu simpanan 15°C didapati boleh 

melanjutkan tempoh penyimpanan dedaun ubi keledek dan dedaun boleh disimpan pada 

jangka masa maksima selama 4 hari sebelum tahap pigmen jatuh dibawah tahap 80% 

daripada jumlah asal. 

Melalui proses pengoptimuman, aceton, 40% kalium hidroksida dan tempoh 2 jam 

saponifikasi dikenalpasti sebagai pelarut ekstrak, kepekatan kalium hidroksida dan 

tempoh saponifikasi optimum bagi proses pengekstrakan karotenoid daripada daun ubi 

keledek. Kestabilan ekstrak pigmen kuning apabila disimpan pada suhu, cahaya dan 

matriks yang berlainan dalam jangka masa pendek dan panjang turut dikenalpasti. 

Pigmen lutin dan beta karotin menunjukan ketidakstabilan apabila disimpan dalam 

aceton, dan apabila terdedah kepada suhu tinggi dan cahaya lampu.  

Analisa LCMS/MS mendapati bahawa pigmen karotenoid (β-carotene, lutein, β- 

cryptoxanthin dan 4-ketozeaxanthin), organik acid tumbuhan dan lilin tumbuhan hadir 

dalam sampel ekstrak. Analisa racun perosak menggunakan GCMS mendapati bahawa 

tiada sisa-sisa racun serangga didalam sampel ekstrak. Kajian antioksida mendapati 
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sampel ekstrak mengandungi 2.99 ± 0.08 GAE g/100g dan 114.86  ± 4.35 µg/g catechin 

apabila dikaji menggunakan kaedah Folin-Ciocaltaeu dan Vanillin HCl. Selain itu, 

kajian juga mendapati bahawa nilai IC50 untuk sampel ekstrak adalah 491.86 µg/ml dan 

hanya sedikit kurang daripada vitamin C (IC50= 471.6 µg/ml). 

Gen lycopene epsilon-cyclase (LcyE), lycopene beta-cyclase (LcyB) dan phytoene 

synthase (Psy) daripada daun ubi keledek berjaya dikenalpasti melalui kaedah RT-PCR. 

Analisa Pfam menunjukkan bahawa gen LcyB dan LcyE termasuk dalam famili protein 

lycopene cyclase manakala gen Psy adalah dalam domain squalene/phytoene synthase. 

Secara keseluruhan, kajian ini mendapai bahawa dedaun ubi keledek sesuai dijadikan 

sebagai sumber pengekstrakan karotenoid (dengan aktiviti antioksida) untuk kegunaan 

industri. 
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